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L-smooth condition

Consider the optimization problem

min
w∈Rd

f(w) (1)

where f : Rd → R denotes a nonconvex and differentiable function; w
corresponds to the model parameters.
To study first-order algorithm convergence for optimization (1), classical
theory assumes L-smooth condition of ∇f(w).

Definition: L-smooth
A differentiable function f : Rd → R is said to be L-smooth, if for all
w, w′ ∈ Rd, we have

∥∇f(w) − f(w′)∥ ≤ L∥w − w′∥. (2)
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Geometric Intuition behind L-smooth
From L-smooth definition, we know

1 “descent inequality”:

f(w) ≤ f(w′) + ⟨∇f(w′), w − w′⟩ + L

2
∥∥w − w′∥∥2

.

2 one can upper bound f(w) by a quadratic function.

Figure: Visualization of L-smooth & strongly convex function
[Taylor et al, (2020)]

Q: Does L-smooth condition hold in real applications?
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Motivation Example: Phase Retrieval

Given m intensity measurements yr = |aT
r w|2 + nr for r = 1, ..., m, where

ar is the measurement vector and nr is the additive noise. Phase retrieval
reconstructs underlying object w∗ by solving the regression problem,

min
w∈Rd

F (w) = 2
m

m∑
r=1

fξ(w) = 1
2m

m∑
r=1

(
yr −

∣∣aT
r w

∣∣2)2
. (3)

Property of fξ(w) in (3)

For any w, w′ ∈ Rd, fξ(w) = 1
4 (yξ − |aT

ξ w|2)2 satisfies∥∥∇fξ

(
w′) − ∇fξ(w)

∥∥ ≤
∥∥w′ − w

∥∥
· O

(
a

4
3max

∥∥∇fξ

(
w′)∥∥ 2

3 + a
4
3max

∥∥∇fξ(w)
∥∥ 2

3 + ymaxa2
max

)
Key observation: Additional ∇fξ(w), ∇fξ(w′) on the RHS, L-smooth
failed.
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Motivation Example: DRO

According to [Levy et al. (2020)]; [Jin et al, (2021)], under mild
assumptions, ϕ-divergence regularized distributionally robust optimization
(DRO) has following dual reformulation

min
w∈Rd,η∈R

L(w, η) = λEξ∼P ϕ∗
(ℓξ(w) − η

λ

)
+ η. (4)

Property of (4) [Jin et al, (2021)]; [Chen et al, (2023)]

For any (w, η), (w′, η′) ∈ Rd × R, under mild assumptions on ℓξ(·) and
ϕ∗, (4) satisfies

∥∇L(w, η) − ∇L(w′, η′)∥ ≤ (L + 2M(G + 1)2

λ
+ L∥∇L(w, η)∥)

· ∥(w, η) − (w′, η′).∥

Key observation: Additional ∇fξ(w), ∇fξ(w′) on the RHS, L-smooth
again failed.
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Motivation Example: Neural Networks

According to [Zhang et al. (2019)], they empirically observe that the
smoothness parameter scale with norm linearly

Figure: Gradient norm vs local gradient Lipschitz constant on a log-scale
along the training trajectory ([Zhang et al. (2019)]).
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Generalized Smooth Condition

L∗
asym(α)-generalized smooth condition [Chen et al, (2023)]

f is differentiable and bounded below.
There exists constants L0, L1 > 0 and α ∈ [0, 1] such that for any
w, w′ ∈ Rd, we have∥∥∇f(w) − ∇f(w′)

∥∥ ≤
(
L0 + L1

∥∥∇f(w′)
∥∥α)∥∥w − w′∥∥. (5)

Under above assumption, we have “descent inequality”

f(w) ≤ f(w′)+⟨∇f(w′), w − w′⟩

+ 1
2(L0 + L1

∥∥∇f(w′)
∥∥α︸ ︷︷ ︸

additional term

)
∥∥w − w′∥∥2

. (6)

This characterizes a broader class of irregular geometries than those
captured by L-smooth condition.
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Challenges to GD

Under generalized-smooth condition, gradient descent is hard to
analyze and performs worse because...

1 it requires an additional assumption that

∥∇f(w)∥ ≤ G = sup{u|u2 ≲ O(ℓ(u) × ∆0)}, (7)

where ℓ is a sub-quadratic function, according to [Li et al. (2024)].
2 Condition (7) is implicit, hard to find efficient estimation in practice.
3 G is highly dependent on function value gap ∆0 = f(w0) − f∗ and

initialization distance ∥w0 − w∗∥.
4 Convergence is established by requiring learning rate satisfying

γ < O(1/G), which can be slow.
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Adaptive-Normalized GD

Why Normalization?
Q: Having observed the RHS of “descent inequality” including
(L0 + L1∥∇f(w)∥α)∥w − w′∥, how can we control the term induced by
∥∇f(w)∥α?
A: Normalized or Clipped gradient descent algorithms

1 In this work, we consider Adaptively Normalized Gradient-Descent
[Chen et al, (2023)]. The update rule is

(AN-GD) wt+1 = wt − γ
∇f(wt)

∥∇f(wt)∥β
, (8)

where β ∈ [α, 1].
2 By allowing β < 1, when ∥∇f(wt)∥ is large, β-normalization makes

the update more aggressive.
3 when ∥∇f(wt)∥ is small, β-normalization can stabilize the update

against divergence.
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Theory-Practice Gap of AN-GD
1 [Chen et al, (2023)] proved O(ϵ−2) convergence for nonconvex and

differentiable generalized-smooth function f in order to obtain a
ϵ-stationary point.

2 It’s unclear why AN-GD performs better than GD for problem like
Phase Retrieval, DRO, etc.

 

      Phase Retrieval (Chen et al. (2023)) 

 

  𝝓-divergence Regularized DRO (Chen et al. (2023)) 

Figure: PR(above) and DRO(below) [Chen et al, (2023)]
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Generalized P L Condition

Generalized Polyak- Lojasiewicz (P L) Condition
There exists constants µ ∈ R+ and 0 < ρ ≤ 2 such that f(·) satisfies, for
all w ∈ Rd, ∥∥∇f(w)

∥∥ρ ≥ 2µ(f(w) − f∗). (9)

According to [Zhou et al. (2016)], [Liu et al. (2022)],
[Scaman et al. (2022)], phase retrieval, over-parametrized neural-network
satisfy this condition under mild assumptions.

Figure: Red Curve (ρ = 2); Black Curve (ρ = 1)
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Convergence Theory and Its Implications

Convergence Result of AN-GD (Informal)
Let inequalities (5) and (9) hold. Denote ∆t := f(wt) − f∗ as the
function value gap. define learning rate γ = O( (µϵ)β/ρ

L0+L1
) for some

β ∈ [α, 1]. Then, to achieve ∆T ≤ ϵ, the following statements hold.
When ρ + β < 2 , the total number of iterations must satisfy

T ≥ Ω
(
(1
ϵ

)
2−ρ

ρ
)
. (10)

1 When ρ is very small such that ρ + β < 2, the effects of β can be
marginal.
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Convergence Theory and Its Implication,
Continued

If ρ + β = 2, the total number of iterations must satisfy

T ≥ Ω
(
(1
ϵ

)
β
ρ log(∆0

ϵ
)
)
. (11)

If ρ + β > 2, there exists a time T0 such that the total number of
iterations after T0 must satisfy

T ≳Ω
(

log
(
(1
ϵ

)
β

ρ+β−2
))

. (12)

1 When ρ = 2, β = 0, it recovers linear convergence achieved by
gradient descent under the standard P L and L-smooth condition.

2 Once ρ + β > 2, AN-GD exhibits a two-phase convergence behavior,
where the latter phase accelerates the rate from polynomial to local
linear convergence.

Yang, Tripp, Sun, Zou and Zhou TAMU, HC, SBU, and ASU



A Special Example

Moreover, this theorem reveals varying β smaller than 1 do accelerate
convergence under certain geometry...

Example
when ρ = 1 and consider β1 = 2

3 , β2 = 1, AN-GD achieves the iteration
complexities O(ϵ−1) and Õ(ϵ−1) respectively.

Q: Can we generalize AN-GD for solving stochastic optimization
problems?
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AN-SGD

Through out, we denote fξ(w) as the loss function associated with the
data sample ξ, and we minimize the expected loss function F (·) satisfies
the generalized-smooth condition (inequality (5)).

min
w∈Rd

F (w) = Eξ∼P
[
fξ(w)

]
. (13)

The straightforward extension of AN-GD under stochastic setting is to
replace ∇f(w) by ∇fξ(w), resulting

(AN-SGD) wt+1 = wt − γ
∇fξ(wt)

∥∇fξ(wt)∥β
. (14)

The variations of AN-SGD has been studied extensively, for example,
Clipped-SGD, Normalized SGD with momentum. They can achieve a
sample complexity of O(ϵ−4) under generalized-smooth and mild noise
assumptions.
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What’s the potential limitation?

0 1∇fξ1

∇fξ2

∇fξ2
| |∇fξ2 | |

1 𝔼[
∇fξ

| |∇fξ | | ]

∇F
| |∇F | |

1 Biased gradient estimator, i.e., E[ ∇fξ(wt)
∥∇fξ(wt)∥β ] ̸= ∇F (wt)

∥∇F (wt)∥β . This is
due to the dependence between ∇fξ(wt) and ∥∇fξ(wt)∥β .

2 Strong assumption in analysis, i.e.,
1 Almost sure bounded approximation error, i.e.,

∥∇fξ(w) − ∇F (w)∥ ≤ τ2 a.s..
([Zhang et al. (2019)], [Zhang et al. (2020)], [Liu et al. (2022)])

2 Large batch size up to B ∼ Ω(ϵ−2) to control stochastic gradient
noise at O(ϵ)-level.
([Chen et al, (2023)], [Reisizadeh et al. (2023)])
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Independent Sampling

We propose the following independently-and-adaptively normalized
stochastic gradient (IAN-SG) estimator

(IAN-SG estimator) ∇fξ(w)
∥∇fξ′(w)∥β

, (15)

where ξ and ξ′ are samples draw independently from the underlying data
distribution.

Intuition on independent sampling
The independence between ξ and ξ′ decorrelates the denominator from
the numerator, making update direction unbiased (difference up to a
scaling factor), i.e.,

Eξ,ξ′

[
∇fξ(w)

∥∇fξ′(w)∥β

]
= Eξ′

[
Eξ

[
∇fξ(w)

]
∥∇fξ′(w)∥β

]
∝ ∇F (w). (16)
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IAN-SGD Framework

Challenges
Hard to control Eξ′ [∥∇fξ′(w)∥−β ].

We propose independently-and-adaptively normalized SGD (IAN-SGD)
algorithm, where A, Γ,δ are positive constants,

(IAN-SGD): wt+1 = wt − γ
∇fξ(wt)

hβ
t

,

where ht = max
{

1, Γ ·
(

A
∥∥∇fξ′(wt)

∥∥ + δ
)}

. (17)

Intuition behind IAN-SGD
1 Clipping doesn’t slow down convergence too much, as when

∥∇F (w)∥ ↓ 0, generalized-smooth condition reduces to L-smooth
condition.

2 Imposing constant lower bound, δ, on ht helps avoid numerical
instability in practice. (Similar as Adam, Adagrad etc.)
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IAN-SGD Convergence

Noise Assumptions
We adopt the following noise assumptions for analysis.

1 ∇fξ(w) is unbiased, i.e., Eξ∼P
[
∇fξ(w)

]
= ∇F (w).

2 There exists 0 ≤ τ1 < 1, τ2 > 0 such that for any w ∈ Rd,∥∥∇fξ(w) − ∇F (w)∥ ≤ τ1
∥∥∇F (w)

∥∥ + τ2 a.s. ∀ξ ∼ P. (18)

Above assumption implies
1 ∥∇F (wt)∥ ≤ 1

1−τ1
∥∇fξ(wt)∥ + τ2

1−τ1
. Thus, one can choose

A = 1
1−τ1

, δ = τ2
1−τ1

.
2 When gradient noise is heavy-tailed, i.e., τ1 ↑ 1 and τ2 is large, we

should increase A and δ accordingly, ensuring that the normalization
term dominates ht.
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IAN-SGD Convergence Continued

Convergence Result(Informal)

For IAN-SGD algorithm, choose learning rate γ = O( 1√
T

), and A = 1
1−τ1

δ = τ2
1−τ1

, Γ = (4L1γ(2τ2
1 + 1))

1
β .

Denote Λ = F (w0) − F ∗ + 1
2 (L0 + L1)(1 + 4τ2

2 )2.
Then, with probability at least 1

2 , IAN-SGD produces a sequence
satisfying mint≤T ∥∇F (wt)∥ ≤ ϵ if the total number of iteration T
satisfies

T ≥ O(Λ2ϵ−4). (19)
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IAN-SGD Convergence Continued
Above Theorems...

1 recovers similar convergence rate in [Zhang et al. (2019)] when
τ1 = 0.

2 requires sampled ξ, ξ′ at Ω(1)-level.
3 establishes O(ϵ−4) convergence under weaker noise assumption.

Open Problem
However, Our noise assumption (18) is still stronger than expected noise
assumption, i.e.,

Eξ∥∇fξ(w) − ∇F (w)∥κ ≤ τκ
2 , κ ∈ (1, 2]. (20)

[Koloskova et al. (2023)] showed that Clipped-SGD achieves a
convergence rate of O(ϵ−5) when κ = 2, provided that the sampled ξ is
at the Ω(1) level. Q(Open): Is there a way to modify the algorithm
design or refine the analysis so that normalized stochastic gradient
methods can achieve O(ϵ−4) while maintaining an Ω(1)-level batch size
under the generalized-smooth and expected noise assumptions?
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Phase Retrieval and DRO

We compare the objective values of Phase Retrieval (3) and DRO (4)
versus sample complexity using IAN-SGD and other baselines in the
following figures.

Figure: Loss vs. Sample Plot for Phase Retrieval (Left) and DRO (Right)
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Training ResNet

We compare the cross-entropy loss of ResNet on CIFAR-10 versus the
number of epochs using IAN-SGD and other baselines in the following
figures.

Figure: Loss vs. Epoch Plot for ResNet18 (Left) and ResNet50 (Right)
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Thank You!
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