A Stochastic Algorithm for Sinkhorn Distance-Regularized DRO

Yufeng Yang Yi Zhou Zhaosong Lu

Texas A&M University, College Station; University of Minnesota, Twin Cities

ISyE

Motivation of Study

Why Distributionally Robust Optimization(DRO)

DRO improves model robustness against distribution shift, which has important applications many several ML fields, including

- Adversarial attack: Gradient Attack will cause distribution shift over training data
- Self-Supervised Learning: Wrong selection of negative samples will cause distribution shift in embedded image-text pairs (i.e., CLIP model).
- Reinforcement Learning: Environment is subject to change, need to force policy shift for safety issue in real applications.

In this work, we study the information-divergence regularized DRO problem

$$\min_{x \in \mathbf{R}^d} \sup_{\mathbb{Q}} \Big\{ \mathbb{E}_{\xi \sim \mathbb{Q}} \big[\ell(x; \xi) \big] - \lambda W_{\varepsilon}(\mathbb{P}, \mathbb{Q}) \Big\}, \tag{1}$$

 $\ell(x;\xi)$ represents loss function under shifted distribution \mathbb{Q} , $W_{\varepsilon}(\mathbb{P},\mathbb{Q})$ represents information divergence among nominal distribution \mathbb{P} and shifted distribution \mathbb{Q} .

Challenges: $\sup_{\mathbb{Q}}$ is maximized over distribution \to Hard to find explicit \mathbb{Q}^* in practice.

Choice of $W_{\varepsilon}(\mathbb{P},\mathbb{Q})$: Generalized Sinkhorn Distance

Denote $\Gamma(\mathbb{P},\mathbb{Q})$ as the set of joint distributions that have marginal distributions \mathbb{P},\mathbb{Q} . For a fixed regularization parameter $\varepsilon > 0$ and a cost metric $c: \Omega \times \Omega \to \mathbb{R}$, the generalized Sinkhorn distance is defined as

$$W_{oldsymbol{arepsilon}}(\mathbb{P},\mathbb{Q}) = \inf_{oldsymbol{\gamma} \in \Gamma(\mathbb{P},\mathbb{Q})} \Bigl\{ \mathbb{E}_{(\zeta,\xi) \sim oldsymbol{\gamma}} ig[c(\zeta,\xi) ig] + oldsymbol{arepsilon} D_f(oldsymbol{\gamma} \, | \, \mathbb{P} \otimes oldsymbol{v}) \Bigr\},$$

where D_f corresponds to the f-divergence, that is,

$$D_f(\gamma \, | \, \mathbb{P} \otimes \mathbf{v}) = \int fig(rac{\mathrm{d} \gamma(\zeta, \xi)}{\mathrm{d} \mathbb{P}(\zeta) \mathrm{d} \mathbf{v}(\xi)}ig) \mathrm{d} \mathbf{v}(\xi) \mathrm{d} \mathbb{P}(\zeta).$$

And $\frac{d\gamma(\zeta,\xi)}{d\mathbb{P}(\zeta)dv(\xi)}$ represents density ratio of γ with respect to $\mathbb{P}\otimes v$ evaluated at (ζ,ξ) .

Why Generalized Sinhkhorn Distance?

- vs. KL: 1. Symmetric; 2. Allows sample to have different probability support.
- vs. Wasserstein Distance Convex Programming → easier to solve.
- vs. Original Sinkhorn Distance f-divergence is more general than KL-divergence.

Our Contributions

TL; DR

Generalize Sinkhorn distance based on the class of f-divergence measures, which allows to use a broader range of divergences to model the ambiguity set.

Derive an equivalent dual formulation with strong duality guarantee. The dual formulation shares novel structures, but it can be solved efficiently using nested stochastic programming. **Design** a Nested-SGD algorithm with convergence guarantee, which enables to solve large-scale problems.

Ghadimi, S. and Lan, G. (2013). Stochastic first- and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368.

Dual Problem Formulation, Assumptions and Structures

Denote $\gamma_{\zeta}(\xi)$ as conditional probability over ξ . We decompose the joint distribution as $\gamma(\zeta,\xi) = \gamma_{\zeta}(\xi)\mathbb{P}(\zeta)$ From principle of interchangeability, the primal problem in (1) can be rewritten as

$$\min_{\mathbf{x} \in \mathbf{R}^d} \mathbb{E}_{\zeta \sim \mathbb{P}} \left[\sup_{\mathbf{\gamma}_{\zeta}} \left[\ell(\mathbf{x}; \boldsymbol{\xi}) - \lambda c(\zeta, \boldsymbol{\xi}) \right] - \lambda \varepsilon D_f(\mathbf{\gamma}_{\zeta} \mid \mathbf{v}) \right) \right]. \tag{2}$$

By inverse C.D.F sampling, the inner supremum term $\sup_{\gamma_{\zeta}}(\cdot)$ has the following equivalent dual formulation

$$\underline{\min_{\boldsymbol{\eta} \in \mathbf{R}} \left\{ L_{\zeta}(x, \boldsymbol{\eta}) := \lambda \varepsilon \mathbb{E}_{\xi \sim v} \left[f^* \left(\frac{\ell(x; \xi) - \lambda c(\zeta, \xi) - \boldsymbol{\eta}}{\lambda \varepsilon} \right) \right] + \boldsymbol{\eta} \right\}}, \tag{3}$$

where v is the reference measure of $\xi \sim \mathbb{Q}$; η is dual variable, f^* denotes the conjugate function of f and $\eta_x^*(\zeta) \in \arg\min_{\eta} L_{\zeta}(x,\eta)$.

For simplicity, denote

$$\Psi_{\zeta}(x) := L_{\zeta}(x, \eta_x^*(\zeta)), \quad L_{\zeta, \xi}(x, \eta) := \lambda \varepsilon f^* \left(\frac{\ell(x; \xi) - \lambda c(\zeta, \xi) - \eta}{\lambda \varepsilon} \right) + \eta.$$

Then, the dual problem of (1) can be written as the following problem

$$\min_{\mathbf{x} \in \mathbf{R}^d} \mathbb{E}_{\zeta \sim \mathbb{P}} \big[\Psi_{\zeta}(\mathbf{x}) \big], \text{ where } \Psi_{\zeta}(\mathbf{x}) = L_{\zeta}(\mathbf{x}, \boldsymbol{\eta}^*(\zeta)). \tag{4}$$

Challenges:

- Double Expectation over different probability measure, $\xi \sim v$ and $\zeta \sim \mathbb{P} \to \mathsf{Nested}$ Structure!
- In-context inner minimizer $\eta^*(\zeta)$ subject to change with each $\zeta. o$ Sample Inefficiency!

In this work, we adapt following assumptions

- Lipschitz Continuous and Smooth $\ell(\cdot;\xi)$ For every ξ , $\ell(\cdot;\xi)$ is G-Lipschitz continuous, and $\ell(\cdot;\xi)$ is differentiable and L-smooth.
- Smoothness of f^* Function $f^*(\cdot)$ is differentiable and M-smooth.
- Bounded Variance of ℓ For every x, the variance of $\ell(x;\cdot)$ is bounded by σ^2 .
- Bounded Variance of c For every ζ , the variance of $c(\zeta, \cdot)$ is bounded by δ^2 . And for every ξ , the variance of $c(\cdot, \xi)$ is bounded by δ^2 .

Why Dual Formulation can be Solved by Nested Stochastic Programming? Two Fundamental Conclusions!

- Gradient Equivalence between $\nabla \Psi_{\zeta}(x)$ and $\nabla_1 L_{\zeta}(x, \eta_x^*(\zeta))$ (Jin et al., 2021) Let Assumptions hold and consider any fixed x and ζ . Then, the function $\Psi_{\zeta}(x)$ is differentiable and satisfies $\nabla \Psi_{\zeta}(x) = \nabla_1 L_{\zeta}(x, \eta_x^*(\zeta))$, where $\eta_x^*(\zeta) \in \arg\min_{\eta} L_{\zeta}(x, \eta)$.
- Approximation Error Relationship Suppose we obtain x and $\eta_x(\zeta)$ such that the gradient taken over second argument satisfies

$$\left|\nabla_2 L_{\zeta}(x, \eta_x(\zeta))\right| \leq \varepsilon_1.$$
 (5)

Then, for any ζ , the gradient taken over first argument satisfies

$$\|\nabla \Psi_{\zeta}(x) - \nabla_{1} L_{\zeta}(x, \eta_{x}(\zeta))\| \le G\varepsilon_{1}. \tag{6}$$

Conclusion: As long as $\eta_x^*(\zeta)$ is near-optimal, we can guarantee $\nabla_1 L_{\zeta}(x, \eta_x(\zeta))$ approximate $\nabla \Psi_{\zeta}(x)$ with controllable error!

Proposed Algorithms, Properties and Convergence

Algorithm 1 Nested-SGD for solving $\mathbb{E}_{\zeta \sim \mathbb{P}}[\Psi_{\zeta}(x)]$

- 1: Input: $T \in \mathbb{N}$, initialization x_0 , η_0 , learning rate γ_t
- 2: **for** t = 0 **to** T 1 **do**
- 3: Sample $\{\zeta\}$ and $\{\xi\}_{B_1}$ with batch size B_1
- 4: Construct estimator $\eta_{x_t}(\zeta)$ via Algorithm 2
- 5: Compute gradient estimator \hat{g}_t^B for $abla\Psi_{\zeta}(x)$
- 6: Update $x_{t+1} = x_t \gamma_t \hat{g}_t^B$
- 7: end for
- 8: **Output:** $x_{\bar{t}}$, where \bar{t} is sampled from $\{0, \dots, T-1\}$ uniformly at random

- Algorithm 2 Construct Estimator $\eta_x(\zeta)$ 1: Input: $D \in \mathbb{N}$, learning rate α_d
- 2: for d = 0 to D 1 do
- $_3$: Utilize the ζ sampled in Algorithm 1
- 4: Sample $\{\xi\}_{B_2}$ with batch size B_2 5: Compute gradient estimator v^B
- 5: Compute gradient estimator v_d^B for $abla_2 L_{\zeta,\xi}(x, \eta)$
- 6: Update $oldsymbol{\eta}_{x_t}^{d+1}(\zeta) = oldsymbol{\eta}_{x_t}^d(\zeta) oldsymbol{lpha}_d v_d^B$
- 7: end for
- 8: Output: $\eta_{x_t}^{\bar{d}}(\zeta)$, where $\bar{d} \in \{0, \dots, D-1\}$ corresponds to the index with minimal gradient norm

• **Directional Smoothness**: For variable x and η , the following smoothness conditions hold. For any x, x', it holds that

$$\mathbb{E}_{\zeta \sim \mathbb{P}} \left\| \nabla \Psi_{\zeta}(x) - \nabla_{1} L_{\zeta}(x', \eta_{x}^{*}(\zeta)) \right\|^{2} \leq K^{2} \left\| x - x' \right\|^{2}, \tag{7}$$

where $K = G^2(\lambda \varepsilon)^{-1}M + L$.

For any x and any η, η' , it holds that

$$\mathbb{E}_{\xi \sim \nu} \| \nabla_2 L_{\zeta, \xi}(x, \eta) - \nabla_2 L_{\zeta, \xi}(x, \eta') \|^2 \le K'^2 \| \eta - \eta' \|^2, \tag{8}$$

where $K' = M(\lambda \varepsilon)^{-1}$.

• Affine Bounded Variance: For mini-batch gradient estimator \hat{g}_t^B used in Algorithm 1, it satisfies

$$\mathbb{E}_{\zeta \sim \mathbb{P}, \xi_{B} \sim \nu} \left\| \hat{g}_{t}^{B} \right\|^{2} \leq R_{B_{1}} + \frac{8G^{2}\varepsilon_{1}^{2}}{B_{1}} + \left\| \nabla_{1} \mathbb{E}_{\zeta \sim \mathbb{P}} \left[L_{\zeta}(x_{t}, \eta_{x_{t}}(\zeta)) \right] \right\|^{2}, \tag{9}$$

where $R_{B_1}=O(rac{G^2+G^2M^2(\lambdaarepsilon)^{-2}\sigma^2}{B_1}+G^2M^2arepsilon^{-2}\delta^{-2}).$

For mini-batch gradient estimator v_d^B used in Algorithm 2, it satisfies

$$\mathbb{E}_{\xi_{B} \sim v} \|v_d^B\|^2 \le \frac{R_2}{B_2} + \|\nabla_2 L_{\zeta}(x_t, \eta_{x_t}^d(\zeta))\|^2, \tag{10}$$

where $R_2 = 2M^2(\lambda \varepsilon)^{-2}(\sigma^2 + \lambda^2 \delta^2)$.

Convergence of Main Algorithm

Let Assumptions hold. Denote $\Delta = \mathbb{E}_{\zeta \sim \mathbb{P}} \big[\Psi_{\zeta}(x_0) \big] - \inf_x \mathbb{E}_{\zeta \sim \mathbb{P}} \big[\Psi_{\zeta}(x) \big]$. Run Nested-SGD Algorithm 1 for T iterations with learning rate $\gamma_t = \min \big\{ \frac{1}{3K}, \sqrt{\frac{2\Delta}{KR_{B_1}T}} \big\}$ and error threshold $\varepsilon_1(t) = \Theta(G^{-1}T^{-\frac{1}{2}})$ for all t. Then, the convergence result is

$$\mathbb{E} \left\| \nabla \mathbb{E}_{\zeta \sim \mathbb{P}} \left[\Psi_{\zeta}(x_t) \right] \right\|^2 \le O\left(\sqrt{\frac{\Delta K R_{B_1}}{T}}\right) + O\left(\frac{\Delta K}{T}\right) + O\left(\frac{B_1^{-1} \sqrt{\Delta K / R_{B_1}}}{T^{3/2}}\right). \tag{11}$$

Moreover, to achieve $\mathbb{E}\|\nabla\mathbb{E}_{\zeta\sim\mathbb{P}}[\Psi_{\zeta}(x_t)]\| \leq \delta_1$, choose $B_1 = \Theta(1)$, then the sample complexity of Algorithm 1 is $\Omega(\Delta K R_{B_1} \delta_1^{-4})$.

For Algorithm 2(1-dimension stochastic programming), the convergence analysis follows the standard analysis (Ghadimi and Lan, 2013). The difference is we use $B_2 = \Theta(\varepsilon^{-2})$ mini-batch size to ensure convergence.

Jin, J., Zhang, B., Wang, H., and Wang, L. (2021). Non-convex distributionally robust optimization: Non-asymptotic analysis. In Advances in Neural Information Processing Systems, pages 2771–2782. Curran Associates, Inc.