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Motivation of Study

Distributionally Robust Optimization(DRO)

Why Distributionally Robust Optimization(DRO)

DRO improves model robustness against distribution shift, which has important applications many

several ML fields, including

Adversarial attack: Gradient Attack will cause distribution shift over training data

Self-Supervised Learning: Wrong selection of negative samples will cause distribution shift in

embedded image-text pairs (i.e., CLIP model).

Reinforcement Learning: Environment is subject to change, need to force policy shift for safety

issue in real applications.

In this work, we study the information-divergence regularized DRO problem

min
x∈Rd

sup
Q

{
Eξ∼Q

[
`(x;ξ )

]
−λWε(P,Q)

}
, (1)

`(x;ξ ) represents loss function under shifted distribution Q, Wε(P,Q) represents information

divergence among nominal distribution P and shifted distribution Q.
Challenges: supQ is maximized over distribution → Hard to find explicit Q∗ in practice.

Sinhkhorn Distance

Choice ofWε(P,Q): Generalized Sinkhorn Distance

Denote Γ(P,Q) as the set of joint distributions that have marginal distributions P,Q. For a fixed
regularization parameter ε > 0 and a cost metric c : Ω×Ω → R, the generalized Sinkhorn distance

is defined as

Wε(P,Q) = inf
γ∈Γ(P,Q)

{
E(ζ ,ξ )∼γ

[
c(ζ ,ξ )

]
+ εD f (γ | P⊗ν)

}
,

where D f corresponds to the f -divergence, that is,

D f (γ | P⊗ν) =
∫

f
( dγ(ζ ,ξ )

dP(ζ )dν(ξ )

)
dν(ξ )dP(ζ ).

And
dγ(ζ ,ξ )

dP(ζ )dν(ξ ) represents density ratio of γ with respect to P⊗ν evaluated at
(
ζ ,ξ

)
.

Why Generalized Sinhkhorn Distance?

vs. KL: 1. Symmetric; 2. Allows sample to have different probability support.

vs. Wasserstein Distance Convex Programming → easier to solve.

vs. Original Sinkhorn Distance f -divergence is more general than KL-divergence.

Our Contributions

TL; DR

Generalize Sinkhorn distance based on the class of f -divergence measures, which allows to

use a broader range of divergences to model the ambiguity set.

Derive an equivalent dual formulation with strong duality guarantee. The dual formulation

shares novel structures, but it can be solved efficiently using nested stochastic programming.

Design a Nested-SGD algorithm with convergence guarantee, which enables to solve

large-scale problems.
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Dual Problem Formulation, Assumptions and Structures

Dual Formulations

Denote γζ(ξ ) as conditional probability over ξ . We decompose the joint distribution as γ(ζ ,ξ ) =
γζ(ξ )P(ζ ) From principle of interchangeability, the primal problem in (1) can be rewritten as

min
x∈Rd

Eζ∼P

[
sup

γζ

(
Eξ∼γζ

[
`(x;ξ )−λc(ζ ,ξ )

]
−λεD f (γζ | ν)

)]
. (2)

By inverse C.D.F sampling, the inner supremum term supγζ
(·) has the following equivalent dual

formulation

min
η∈R

{
Lζ(x,η) := λεEξ∼ν

[
f ∗
(`(x;ξ )−λc(ζ ,ξ )−η

λε

)]
+η

}
︸ ︷︷ ︸

Lζ (x,η∗
x (ζ ))

, (3)

where ν is the reference measure of ξ ∼Q; η is dual variable, f ∗ denotes the conjugate function
of f and η∗

x (ζ ) ∈ argminη Lζ(x,η).

For simplicity, denote

Ψζ(x) := Lζ(x,η
∗
x (ζ )), Lζ ,ξ(x,η) := λε f ∗

(`(x;ξ )−λc(ζ ,ξ )−η

λε

)
+η .

Then, the dual problem of (1) can be written as the following problem

min
x∈Rd

Eζ∼P
[
Ψζ(x)

]
, where Ψζ(x) = Lζ(x,η

∗(ζ )). (4)

Challenges:

Double Expectation over different probability measure, ξ ∼ ν and ζ ∼ P→ Nested Structure!

In-context inner minimizer η∗(ζ ) subject to change with each ζ .→ Sample Inefficiency!

Technical Assumptions

In this work, we adapt following assumptions

Lipschitz Continuous and Smooth `(·;ξ ) For every ξ , `(·;ξ ) is G-Lipschitz continuous, and
`(·;ξ ) is differentiable and L-smooth.

Smoothness of f ∗ Function f ∗(·) is differentiable and M-smooth.

Bounded Variance of ` For every x, the variance of `(x; ·) is bounded by σ 2.

Bounded Variance of c For every ζ , the variance of c(ζ , ·) is bounded by δ 2. And for every ξ ,

the variance of c(·,ξ ) is bounded by δ 2.

Properties

Why Dual Formulation can be Solved by Nested Stochastic Programming? Two Fundamental

Conclusions!

Gradient Equivalence between ∇Ψζ(x) and ∇1Lζ(x,η∗
x (ζ ))(Jin et al., 2021) Let Assumptions

hold and consider any fixed x and ζ . Then, the function Ψζ(x) is differentiable and satisfies

∇Ψζ(x) = ∇1Lζ(x,η∗
x (ζ )), where η∗

x (ζ ) ∈ argminη Lζ(x,η).

Approximation Error Relationship Suppose we obtain x and ηx(ζ ) such that the gradient taken

over second argument satisfies ∣∣∇2Lζ(x,ηx(ζ ))
∣∣≤ ε1. (5)

Then, for any ζ , the gradient taken over first argument satisfies

‖∇Ψζ(x)−∇1Lζ(x,ηx(ζ ))‖ ≤ Gε1. (6)

Conclusion: As long as η∗
x (ζ ) is near-optimal, we can guarantee ∇1Lζ(x,ηx(ζ )) approximate

∇Ψζ(x)with controllable error!

Proposed Algorithms, Properties and Convergence

Proposed Algorithms

Algorithm 1 Nested-SGD for solving

Eζ∼P[Ψζ(x)]

1: Input: T ∈ N, initialization x0, η0, learning

rate γt

2: for t = 0 to T −1 do

3: Sample {ζ} and {ξ}B1 with batch size B1

4: Construct estimator ηxt(ζ ) via Algo-

rithm 2

5: Compute gradient estimator ĝB
t for

∇Ψζ(x)
6: Update xt+1 = xt − γtĝB

t
7: end for

8: Output: xt̄ , where t̄ is sampled from

{0, . . . ,T −1} uniformly at random

Algorithm 2 Construct Estimator ηx(ζ )

1: Input: D ∈ N, learning rate αd

2: for d = 0 to D−1 do

3: Utilize the ζ sampled in Algorithm 1

4: Sample {ξ}B2 with batch size B2

5: Compute gradient estimator vB
d for

∇2Lζ ,ξ(x,η)
6: Update ηd+1

xt
(ζ ) = ηd

xt
(ζ )−αdvB

d
7: end for

8: Output: η d̄
xt
(ζ ), where d̄ ∈ {0, . . . ,D − 1}

corresponds to the index with minimal gra-

dient norm

Some Properties

Directional Smoothness: For variable x and η , the following smoothness conditions hold. For

any x,x′, it holds that

Eζ∼P
∥∥∇Ψζ(x)−∇1Lζ(x

′,η∗
x (ζ ))

∥∥2 ≤ K2
∥∥x− x′

∥∥2
, (7)

where K = G2(λε)−1M+L.
For any x and any η ,η ′, it holds that

Eξ∼ν

∥∥∇2Lζ ,ξ(x,η)−∇2Lζ ,ξ(x,η
′)
∥∥2 ≤ K′2∥∥η −η

′∥∥2
, (8)

where K′ = M(λε)−1.

Affine Bounded Variance: For mini-batch gradient estimator ĝB
t used in Algorithm 1, it satisfies

Eζ∼P,ξB∼ν

∥∥ĝB
t

∥∥2 ≤ RB1 +
8G2ε2

1

B1
+
∥∥∇1Eζ∼P

[
Lζ(xt,ηxt(ζ ))

]∥∥2
, (9)

where RB1 = O(G2+G2M2(λε)−2σ2

B1
+G2M2ε−2δ−2).

For mini-batch gradient estimator vB
d used in Algorithm 2, it satisfies

EξB∼ν

∥∥vB
d

∥∥2 ≤ R2

B2
+
∥∥∇2Lζ(xt,η

d
xt
(ζ ))

∥∥2
, (10)

where R2 = 2M2(λε)−2(σ 2+λ 2δ 2).

Convergence

Convergence of Main Algorithm

Let Assumptions hold. Denote ∆=Eζ∼P
[
Ψζ(x0)

]
− infxEζ∼P

[
Ψζ(x)

]
. Run Nested-SGDAlgorithm 1

for T iterations with learning rate γt = min
{ 1

3K ,
√

2∆

KRB1T

}
and error threshold ε1(t) = Θ(G−1T−1

2)

for all t. Then, the convergence result is

E
∥∥∇Eζ∼P

[
Ψζ(xt)

]∥∥2 ≤ O
(√

∆KRB1

T

)
+O

(
∆K
T

)
+O

(B−1
1

√
∆K/RB1

T 3/2

)
. (11)

Moreover, to achieve E
∥∥∇Eζ∼P

[
Ψζ(xt)

]∥∥≤ δ1, choose B1 = Θ(1), then the sample complexity of

Algorithm 1 is Ω(∆KRB1δ
−4
1 ).

For Algorithm 2(1-dimension stochastic programming), the convergence analysis follows the

standard analysis (Ghadimi and Lan, 2013). The difference is we use B2 = Θ(ε−2) mini-batch size

to ensure convergence.
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