Yufeng Yang, Ph.D. Student

Seeking Machine Learning Engineer, Data Science and Quantative Internship Opportunities.

☑ yufeng.yang@tamu.edu

in Linkedin

https://ynyang94.github.io

Education

2023 - now

Ph.D., Computer Science and Engineering, Texas A&M University, College Station, TX

2023-2024 Ph.D., Electrical and Computer Engineering (Transfer out with advisor), University of Utah, *Salt Lake City, UT*.

Advisor: Dr. Yi Zhou

Selected course work: Information Retrieval; Distributed System and Cloud Computing; Deep Reinforcement Learning. Machine Learning; Stochastic Calculus; Game Theory; Multi-agent Reinforcement Learning.

2021 - 2023

M.Sc., Computational Science and Engineering, Rice University, *Houston, TX*. Selected course work: Deep Learning for Vision and Language; Convex Optimization; Optimization under Uncertainty; Algorithms and Data Structure; Numerical Algebra; Scientific Computing; Statistical Signal Processing.

2017 - 2021

B.Sc., **Mathematics and Applied Mathematics**, The Chinese University of Hong Kong, *Shenzhen. China*

2018 Summer Exchange Program, University of California, Irvine.

Selected course work: Linear and Integer Optimization; Stochastic Process; Partial Differential Equations; Regression Analysis; Mathematical Statistics; Measure Theoretical Probability; Multivariate statistics; Web Data Analytics; Mathematical Analysis; Information Theory.

Employment History

2024 - now

■ Graduate Research Assistant, Texas A&M University, College Station, TX.

I significantly expanded my previous work in Distributionally Robust Optimization (DRO) with new theoretical analysis and scalable experiments, providing more theoretical insights on how data re-weighting and adversarial samples can enhance model performance. My PhD thesis continuously focus on designing scalable stochastic optimization and reinforcement learning methods to train robust and human-value aligned AI systems, aiming to overcome real-world challenges such as learning under uncertain environments and conflicting objectives.

2024-2024

I was a visiting PhD Student, Griffiss Institute, Rome, NY
I was a visiting Ph.D. student under VFRP program at the Air Force Research Lab. During 2024 summer, I developed first-order optimization algorithms for problems with irregular geometry and heavy-tailed noise. Results show combining independent sampling and adaptive normalization enables normalized stochastic gradient descent (SGD) to converge reliably under heavy-tailed gradient noise. These findings were published in TMLR.

2023 - 2024

Graduate Research Assistant, University of Utah, Salt Lake City, UT.

Motivated by distribution shifts in large-scale AI, my research focused on designing scalable first-order algorithms for distributionally robust optimization (DRO). I formulated the DRO problem into a nested contextual stochastic program, where the formulation is provably to be solved via Nested Stochastic Gradient Descent (SGD). These findings were published at the NeurIPS OPT workshop.

Employment History (continued)

2020 - 2021

■ Undergraduate Research Assistant. Shenzhen Institute of Artificial Intelligence and Robotics for Society, *Shenzhen, China*.

I participated in designing new loss functions and fused Generative Adversarial Networks (GANs) with Convolutional Block Attention Module to **improve object detection accuracy on real bottle images from China Resources Sanjiu Medical & Pharmaceutical Co., Ltd.** Additionally, I integrated unsupervised learning into the data processing pipeline to enhance the deep learning model's robustness.

Research Publications

Paper with code

- Y. Yang, E. Tripp, Y. Sun, S. Zou, and Y. Zhou, "Adaptive gradient normalization and independent sampling for (stochastic) generalized-smooth optimization," *Transactions on Machine Learning Research*, 2025. OURL: https://github.com/ynyang94/Gensmooth-IAN-SGD.git.
- Y. Yang, Y. Zhou, and Z. Lu, "Nested stochastic algorithm for generalized sinkhorn distance-regularized distributionally robust optimization," *Submitted to Journal of Machine Learning Research*, 2025. URL: https://github.com/ynyang94/GeneralSinkhorn-Regularized-DRO.git.
- Y. Yang, Y. Zhou, and Z. Lu, "A stochastic algorithm for sinkhorn distance-regularized distributionally robust optimization," *NeurIPS 2024 OPT workshop*, 2024.

Other Project Experience

2023 Machine Learning Library

I created **Python API-module** containing attributes for classical machine learning models, including decision trees, ensemble learning, and parametric methods. I also implemented **first-oder Optimizers** used in machine learning, such as Nesterov acceleration, mirror descent, proximal gradient descent, and ADMM.

Fair Awareness Image Classification
I explored several methods for improving classification accuracy over imbalanced data, including AUC maximization, transfer learning, and contrastive learning with pre-trained vision-language models. My results demonstrate the potential of using multi-modal information to address the challenges posed by ill-conditioned data distributions.

2022 Distributed Cubic Regularization Optimization

I proposed an inexact cubic regularization algorithm for distributed machine learning on static, undirected graphs. The algorithm outperforms previous distributed first-order methods in convergence speed.

Skills

Programming Language

Python, MATLAB, C/C++, R, Lagran, Linux command.

Package/Software

PyTorch, Numpy, Pandas, Matplotlib, CVX, Gurobi.

Modelling

Machine Learning, Continuous and Discrete Optimization, Differential Equations, Stochastic Modeling and Simulation.